\(\int \frac {\sec ^2(c+d x) (A+C \sec ^2(c+d x))}{(b \sec (c+d x))^{4/3}} \, dx\) [16]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 95 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx=-\frac {3 (5 A+2 C) \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\cos ^2(c+d x)\right ) \sin (c+d x)}{5 b d \sqrt [3]{b \sec (c+d x)} \sqrt {\sin ^2(c+d x)}}+\frac {3 C (b \sec (c+d x))^{2/3} \tan (c+d x)}{5 b^2 d} \]

[Out]

-3/5*(5*A+2*C)*hypergeom([1/6, 1/2],[7/6],cos(d*x+c)^2)*sin(d*x+c)/b/d/(b*sec(d*x+c))^(1/3)/(sin(d*x+c)^2)^(1/
2)+3/5*C*(b*sec(d*x+c))^(2/3)*tan(d*x+c)/b^2/d

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {16, 4131, 3857, 2722} \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx=\frac {3 C \tan (c+d x) (b \sec (c+d x))^{2/3}}{5 b^2 d}-\frac {3 (5 A+2 C) \sin (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\cos ^2(c+d x)\right )}{5 b d \sqrt {\sin ^2(c+d x)} \sqrt [3]{b \sec (c+d x)}} \]

[In]

Int[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(b*Sec[c + d*x])^(4/3),x]

[Out]

(-3*(5*A + 2*C)*Hypergeometric2F1[1/6, 1/2, 7/6, Cos[c + d*x]^2]*Sin[c + d*x])/(5*b*d*(b*Sec[c + d*x])^(1/3)*S
qrt[Sin[c + d*x]^2]) + (3*C*(b*Sec[c + d*x])^(2/3)*Tan[c + d*x])/(5*b^2*d)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2722

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
)*Sqrt[Cos[c + d*x]^2]))*Hypergeometric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2], x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rule 3857

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)
*Int[1/(Sin[c + d*x]/b)^n, x]), x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {\int (b \sec (c+d x))^{2/3} \left (A+C \sec ^2(c+d x)\right ) \, dx}{b^2} \\ & = \frac {3 C (b \sec (c+d x))^{2/3} \tan (c+d x)}{5 b^2 d}+\frac {(5 A+2 C) \int (b \sec (c+d x))^{2/3} \, dx}{5 b^2} \\ & = \frac {3 C (b \sec (c+d x))^{2/3} \tan (c+d x)}{5 b^2 d}+\frac {\left ((5 A+2 C) \left (\frac {\cos (c+d x)}{b}\right )^{2/3} (b \sec (c+d x))^{2/3}\right ) \int \frac {1}{\left (\frac {\cos (c+d x)}{b}\right )^{2/3}} \, dx}{5 b^2} \\ & = -\frac {3 (5 A+2 C) \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\cos ^2(c+d x)\right ) (b \sec (c+d x))^{2/3} \sin (c+d x)}{5 b^2 d \sqrt {\sin ^2(c+d x)}}+\frac {3 C (b \sec (c+d x))^{2/3} \tan (c+d x)}{5 b^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.01 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx=\frac {3 (b \sec (c+d x))^{2/3} \left (4 A \cot (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},\sec ^2(c+d x)\right )+C \csc (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {4}{3},\frac {7}{3},\sec ^2(c+d x)\right ) \sec (c+d x)\right ) \sqrt {-\tan ^2(c+d x)}}{8 b^2 d} \]

[In]

Integrate[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(b*Sec[c + d*x])^(4/3),x]

[Out]

(3*(b*Sec[c + d*x])^(2/3)*(4*A*Cot[c + d*x]*Hypergeometric2F1[1/3, 1/2, 4/3, Sec[c + d*x]^2] + C*Csc[c + d*x]*
Hypergeometric2F1[1/2, 4/3, 7/3, Sec[c + d*x]^2]*Sec[c + d*x])*Sqrt[-Tan[c + d*x]^2])/(8*b^2*d)

Maple [F]

\[\int \frac {\sec \left (d x +c \right )^{2} \left (A +C \sec \left (d x +c \right )^{2}\right )}{\left (b \sec \left (d x +c \right )\right )^{\frac {4}{3}}}d x\]

[In]

int(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(4/3),x)

[Out]

int(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(4/3),x)

Fricas [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{\left (b \sec \left (d x + c\right )\right )^{\frac {4}{3}}} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(4/3),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + A)*(b*sec(d*x + c))^(2/3)/b^2, x)

Sympy [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (b \sec {\left (c + d x \right )}\right )^{\frac {4}{3}}}\, dx \]

[In]

integrate(sec(d*x+c)**2*(A+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(4/3),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*sec(c + d*x)**2/(b*sec(c + d*x))**(4/3), x)

Maxima [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{\left (b \sec \left (d x + c\right )\right )^{\frac {4}{3}}} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(4/3),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sec(d*x + c)^2/(b*sec(d*x + c))^(4/3), x)

Giac [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{\left (b \sec \left (d x + c\right )\right )^{\frac {4}{3}}} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(4/3),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sec(d*x + c)^2/(b*sec(d*x + c))^(4/3), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^2\,{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{4/3}} \,d x \]

[In]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(b/cos(c + d*x))^(4/3)),x)

[Out]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(b/cos(c + d*x))^(4/3)), x)